skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baker, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract GIS analyses use moving window methods and hotspot detection to identify point patterns within a given area. Such methods can detect clusters of point events such as crime or disease incidences. Yet, these methods do not account forconnectionsbetween entities, and thus, areas with relatively sparse event concentrations but high network connectivity may go undetected. We develop two scan methods (i.e., moving window or focal processes), EdgeScan and NDScan, for detecting local spatial‐social connections. These methods capture edges and network density, respectively, for each node in a given focal area. We apply methods to a social network of Mafia members in New York City in the 1960s and to a 2019 spatial network of home‐to‐restaurant visits in Atlanta, Georgia. These methods successfully capture focal areas where Mafia members are highly connected and where restaurant visitors are highly local; these results differ from those derived using traditional spatial hotspot analysis using the Getis–Ord Gi* statistic. Finally, we describe how these methods can be adapted to weighted, directed, and bipartite networks and suggest future improvements. 
    more » « less